3

Content-based recommendation

From our discussion so far we see that for applying collaborative filtering
techniques, except for the user ratings, nothing has to be known about the items
to be recommended. The main advantage of this is, of course, that the costly task
of providing detailed and up-to-date item descriptions to the system is avoided.
The other side of the coin, however, is that with a pure collaborative filtering
approach, a very intuitive way of selecting recommendable products based on
their characteristics and the specific preferences of a user is not possible: in the
real world, it would be straightforward to recommend the new Harry Potter
book to Alice, if we know that (a) this book is a fantasy novel and (b) Alice has
always liked fantasy novels. An electronic recommender system can accomplish
this task only if two pieces of information are available: a description of the item
characteristics and a user profile that somehow describes the (past) interests of a
user, maybe in terms of preferred item characteristics. The recommendation task
then consists of determining the items that match the user’s preferences best.
This process is commonly called content-based recommendation. Although
such an approach must rely on additional information about items and user
preferences, it does not require the existence of a large user community or a
rating history — that is, recommendation lists can be generated even if there is
only one single user.

In practical settings, technical descriptions of the features and characteris-
tics of an item — such as the genre of a book or the list of actors in a movie — are
more often available in electronic form, as they are partially already provided
by the providers or manufacturers of the goods. What remains challenging,
however, is the acquisition of subjective, qualitative features. In domains of
quality and taste, for example, the reasons that someone likes something are
not always related to certain product characteristics and may be based on a sub-
jective impression of the item’s exterior design. One notable and exceptional

51

52 3 Content-based recommendation

9]

endeavor in that context is the “Music Genome Project”’, whose data are used
by the music recommender on the popular Internet radio and music discovery
and commercial recommendation site Pandora.com. In that project, songs are
manually annotated by musicians with up to several hundred features such
as instrumentation, influences, or instruments. Such a manual acquisition pro-
cess — annotating a song takes about twenty to thirty minutes, as stated by the
service providers — is, however, often not affordable.

We will refer to the descriptions of the item characteristics as “content” in
this chapter, because most techniques described in the following sections were
originally developed to be applied to recommending interesting text documents,
such as newsgroup messages or web pages. In addition, in most of these ap-
proaches the basic assumption is that the characteristics of the items can be
automatically extracted from the document content itself or from unstructured
textual descriptions. Typical examples for content-based recommenders are,
therefore, systems that recommend news articles by comparing the main key-
words of an article in question with the keywords that appeared in other articles
that the user has rated highly in the past. Correspondingly, the recommendable
items will be often referred to as “documents”.

There is no exact border between content-based and knowledge-based sys-
tems in the literature; some authors even see content-based approaches as a
subset of knowledge-based approaches. In this book, we follow the traditional
classification scheme, in which content-based systems are characterized by
their focus on exploiting the information in the item descriptions, whereas in
knowledge-based systems there typically exists some sort of additional means—
end knowledge, such as a utility function, for producing recommendations.

In this chapter we discuss content-based recommendation, focusing par-
ticularly on algorithms that have been developed for recommending textually
described items and for “learning” the user profile automatically (instead of
explicitly asking the user for his or her interests, which is more common in
conversational, knowledge-based systems).

3.1 Content representation and content similarity

The simplest way to describe catalog items is to maintain an explicit list of
features for each item (also often called attributes, characteristics, or item
profiles). For a book recommender, one could, for instance, use the genre, the
author’s name, the publisher, or anything else that describes the item and store

U http:/fwww.pandora.com/mgp.shtml.

3.1 Content representation and content similarity 53

Table 3.1. Book knowledge base.

Title Genre Author Type Price Keywords
The Night Memoir David Carr Paperback 29.90 press and journalism,
of the drug addiction,
Gun personal memoirs,
New York
The Lace Fiction, Brunonia Hardcover 49.90 American
Reader Mystery Barry contemporary
fiction, detective,
historical
Into the Romance, Suzanne Hardcover 45.90 American fiction,
Fire Suspense Brockmann murder,
neo-Nazism

this information in a relational database system. When the user’s preferences
are described in terms of his or her interests using exactly this set of features,
the recommendation task consists of matching item characteristics and user
preferences.

Consider the example in Table 3.1, in which books are described by char-
acteristics such as title, genre, author, type, price, or keywords. Let us further
assume that Alice’s preferences are captured in exactly the same dimensions
(Table 3.2).

A book recommender system can construct Alice’s profile in different ways.
The straightforward way is to explicitly ask Alice, for instance, for a desired
price range or a set of preferred genres. The other way is to ask Alice to rate a
set of items, either as a whole or along different dimensions. In the example,
the set of preferred genres could be defined manually by Alice, whereas the
system may automatically derive a set of keywords from those books that Alice
liked, along with their average price. In the simplest case, the set of keywords
corresponds to the set of all terms that appear in the document.

Table 3.2. Preference profile.

Title Genre Author Type Price Keywords

Fiction, Brunonia Barry, = Paperback 25.65 detective, murder,
Suspense Ken Follett New York

54 3 Content-based recommendation

To make recommendations, content-based systems typically work by evalu-
ating how strongly a not-yet-seen item is “similar” to items the active user has
liked in the past. Similarity can be measured in different ways in the example.
Given an unseen book B, the system could simply check whether the genre
of the book at hand is in the list of Alice’s preferred genres. Similarity in this
case is either 0 or 1. Another option is to calculate the similarity or overlap of
the involved keywords. As a typical similarity metric that is suitable for multi-
valued characteristics, we could, for example, rely on the Dice coefficient” as
follows: If every book B; is described by a set of keywords keywords(B;), the
Dice coefficient measures the similarity between books b; and b; as

2 x |keywords(b;) N keywords(b;)|
|keywords(b;)| + |keywords(b;)|

3.1)

In principle, depending on the problem at hand, various similarity measures
are possible. For instance, in Zanker et al. (2006) an approach is proposed in
which several similarity functions for the different item characteristics are used.
These functions are combined and weighted to calculate an overall similarity
measure for cases in which both structured and unstructured item descriptions
are available.

3.1.1 The vector space model and TF-IDF

Strictly speaking, the information about the publisher and the author are ac-
tually not the “content” of a book, but rather additional knowledge about it.
However, content-based systems have historically been developed to filter and
recommend text-based items such as e-mail messages or news. The standard
approach in content-based recommendation is, therefore, not to maintain a list
of “meta-information” features, as in the previous example, but to use a list of
relevant keywords that appear within the document. The main idea, of course,
is that such a list can be generated automatically from the document content
itself or from a free-text description thereof.

The content of a document can be encoded in such a keyword list in different
ways. In a first, and very naive, approach, one could set up a list of all words
that appear in all documents and describe each document by a Boolean vector,
where a 1 indicates that a word appears in a document and a 0 that the word does
not appear. If the user profile is described by a similar list (1 denoting interest

2 For other measures, see, e.g., Maimon and Rokach (2005) or Baeza-Yaks and Ribaro-Nato
(1999).

3.1 Content representation and content similarity 55

in a keyword), document matching can be done by measuring the overlap of
interest and document content.

The problems with such a simple approach are obvious. First, the simple
encoding is based on the assumption that every word has the same importance
within a document, although it seems intuitive that a word that appears more
often is better suited for characterizing the document. In addition, a larger
overlap of the user profile and a document will naturally be found when the
documents are longer. As a result, the recommender will tend to propose long
documents.

To solve the shortcomings of the simple Boolean approach, documents are
typically described using the TF-IDF encoding format (Salton et al. 1975).
TF-IDF is an established technique from the field of information retrieval and
stands for term frequency-inverse document frequency. Text documents can be
TF-IDF encoded as vectors in a multidimensional Euclidian space. The space
dimensions correspond to the keywords (also called terms or tokens) appearing
in the documents. The coordinates of a given document in each dimension (i.e.,
for each term) are calculated as a product of two submeasures: term frequency
and inverse document frequency.

Term frequency describes how often a certain term appears in a document
(assuming that important words appear more often). To take the document
length into account and to prevent longer documents from getting a higher
relevance weight, some normalization of the document length should be done.
Several schemes are possible (see Chakrabarti 2002, Pazzani and Billsus 2007,
or Salton and Buckley 1988). A relatively simple one relates the actual number
of term occurrences to the maximum frequency of the other keywords of the
document as follows (see also Adomavicius and Tuzhilin 2005).

We search for the normalized term frequency value TF(i, j) of keyword
i in document j. Let freq(i, j) be the absolute number of occurrences of i
in j. Given a keyword i, let OtherKeywords(i, j) denote the set of the other
keywords appearing in j. Compute the maximum frequency maxOthers(i, j)
as max(freq(z, j)), z € OtherKeywords(i, j). Finally, calculate TF(i, j) as in
Chakrabarti (2002):

freq(i, J)

TFG, j) = —————F——
) maxOthers(i, J)

3.2)

Inverse document frequency is the second measure that is combined with
term frequency. It aims at reducing the weight of keywords that appear very
often in all documents. The idea is that those generally frequent words are
not very helpful to discriminate among documents, and more weight should

56 3 Content-based recommendation

therefore be given to words that appear in only a few documents. Let N be the
number of all recommendable documents and 7(i) be the number of documents
from N in which keyword i appears. The inverse document frequency for i is
typically calculated as

N
IDF(i) = log— (3.3)
n(i)
The combined TF-IDF weight for a keyword i in document j is computed
as the product of these two measures:

TF-IDF(, j) = TF(, j) % IDF(i) (3.4)

In the TF-IDF model, the document is, therefore, represented not as a vector
of Boolean values for each keyword but as a vector of the computed TF-IDF
weights.

3.1.2 Improving the vector space model/limitations

TF-IDF vectors are typically large and very sparse. To make them more compact
and to remove irrelevant information from the vector, additional techniques can
be applied.

Stop words and stemming. A straightforward method is to remove so-called
stop words. In the English language these are, for instance, prepositions and
articles such as “a”, “the”, or “on”, which can be removed from the document
vectors because they will appear in nearly all documents. Another commonly
used technique is called stemming or conflation, which aims to replace variants
of the same word by their common stem (root word). The word “stemming”
would, for instance, be replaced by “stem”, “went” by “go”, and so forth.
These techniques further reduce the vector size and at the same time, help to
improve the matching process in cases in which the word stems are also used in
the user profile. Stemming procedures are commonly implemented as a combi-
nation of morphological analysis using, for instance, Porter’s suffix-stripping
algorithm (Porter 1980) and word lookup in dictionaries such as WordNet.” Al-
though this technique is a powerful one in principle, there are some pitfalls, as
stemming may also increase the danger of matching the profile with irrelevant
documents when purely syntactic suffix stripping is used. For example, both the
terms university and universal are stemmed to univers, which may lead to an
unintended match of a document with the user profile (Chakrabarti 2002). Other

3 http://wordnet.princeton.edu.

3.1 Content representation and content similarity 57

problems arise, in particular, when technical documents with many abbrevia-
tions are analyzed or when homonymous words (having multiple meanings)
are in the text.

Size cutoffs. Another straightforward method to reduce the size of the doc-
ument representation and hopefully remove “noise” from the data is to use
only the n most informative words. In the Syskill & Webert system (Pazzani
and Billsus 1997), for instance, the 128 most informative words (with respect
to the expected information gain) were chosen. Similarly, Fab (Balabanovic¢
and Shoham 1997) used the top 100 words. The optimal number of words to
be used was determined experimentally for the Syskill & Webert system for
several domains. The evaluation showed that if too few keywords (say, fewer
than 50) were selected, some possibly important document features were not
covered. On the other hand, when including too many features (e.g., more than
300), keywords are used in the document model that have only limited impor-
tance and therefore represent noise that actually worsens the recommendation
accuracy. In principle, complex techniques for “feature selection” can also be
applied for determining the most informative keywords. However, besides an
increase in model complexity, it is argued that learning-based approaches will
tend to overfit the example representation to the training data (Pazzani and
Billsus 1997). Instead, the usage of external lexical knowledge is proposed to
remove words that are not relevant in the domain. Experiments show a con-
sistent accuracy gain when such lexical knowledge is used, in particular when
few training examples are available.

Phrases. A further possible improvement with respect to representation accu-
racy is to use “phrases as terms”, which are more descriptive for a text than
single words alone. Phrases, or composed words such as “United Nations”, can
be encoded as additional dimensions in the vector space. Detection of phrases
can be done by looking up manually defined lists or by applying statistical
analysis techniques (see Chakrabarti 2002 for more details).

Limitations. The described approach of extracting and weighting individual
keywords from the text has another important limitation: it does not take into
account the context of the keyword and, in some cases, may not capture the
“meaning” of the description correctly. Consider the following simple example
from Pazzani and Billsus (2007). A free-text description of a steakhouse used in
a corresponding recommender system might state that “there is nothing on the
menu that a vegetarian would like”. In this case, in an automatically generated
feature vector, the word vegetarian will most probably receive a higher weight

58 3 Content-based recommendation

than desired and produce an unintended match with a user interested in veg-
etarian restaurants. Note, however, that in general we may assume that terms
appearing in a document are usually well suited for characterizing documents
and that a “negative context” — as shown in the example — is less likely to be
encountered in documents.

3.2 Similarity-based retrieval

When the item selection problem in collaborative filtering can be described as
“recommend items that similar users liked”, content-based recommendation is
commonly described as “recommend items that are similar to those the user
liked in the past”. Therefore, the task for a recommender system is again —
based on a user profile — to predict, for the items that the current user has not
seen, whether he or she will like them. The most common techniques that rely
on the vector-space document representation model will be described in this
section.

3.2.1 Nearest neighbors

A first, straightforward, method for estimating to what extent a certain document
will be of interest to a user is simply to check whether the user liked similar
documents in the past. To do this, two pieces of information are required.
First, we need some history of “like/dislike” statements made by the user
about previous items. Similar to collaborative approaches, these ratings can
be provided either explicitly via the user interface or implicitly by monitoring
the user’s behavior. Second, a measure is needed that captures the similarity
of two documents. In most reported approaches, the cosine similarity measure
(already described in Section 2.2.1) is used to evaluate whether two document
vectors are similar.

The prediction for a not-yet-seen item d is based on letting the k most
similar items for which a rating exists “vote” for n (Allan et al. 1998). If, for
instance, four out of k = 5 of the most similar items were liked by the current
user, the system may guess that the chance that d will also be liked is relatively
high. Besides varying the neighborhood size k, several other variations are
possible, such as binarization of ratings, using a minimum similarity threshold,
or weighting of the votes based on the degree of similarity.

Such a k-nearest-neighbor method (kNN) has been implemented, for in-
stance, in the personalized and mobile news access system described by Billsus
et al. (2000). In this system, the kNN method was used to model the short-term

3.2 Similarity-based retrieval 59

interests of the users, which is of particular importance in the application do-
main of news recommendation. On arrival of a new message, the system looks
for similar items in the set of stories that were recently rated by the user. By
taking into account the last ratings only, the method is thus capable of adapting
quickly and focusing on the user’s short-term interests, which might be to read
follow-up stories to recent events. At the same time, when relying on nearest
neighbors, it is also possible to set an upper threshold for item similarity to
prevent the system from recommending items that the user most probably has
already seen.

In the described system, the kKNN method was implemented as part of a
multistrategy user profile technique. The system maintained profiles of short-
term (ephemeral) and long-term interests. The short-term profile, as described
earlier, allows the system to provide the user with information on topics of
recent interest. For the long-term model, the system described by Billsus et al.
(2000) therefore collects information over a longer period of time (e.g., several
months) and also seeks to identify the most informative words in the documents
by determining the terms that consistently receive high TF-IDF scores in a larger
document collection. The prediction of whether an item is of interest with
respect to the long-term user model is based on a probabilistic classification
technique, which we describe in Section 3.3.1. Details on the threshold values
and algorithms used in the experimental systems are described by Billsus and
Pazzani (1999).

Given the interest predictions and recommendations for the short-term and
the long-term user models, the question remains how to combine them. In
the described system, a rather simple strategy is chosen. Neighbors in the
short-term model are searched; if no such neighbors exist, the long-term user
model is used. Other combinations are also possible. One option would be to
acquire the short-term preferences online — for example, by questioning topics
of interest and then sorting the matching items based on the information from
the long-term preferences.

In summary, kNN-based methods have the advantage of being relatively
simple to implement*, adapt quickly to recent changes, and have the advantage
that, when compared with other learning approaches, a relatively small number
of ratings is sufficient to make a prediction of reasonable quality. However, as
experiments show, the prediction accuracy of pure kNN methods can be lower
than those of other more sophisticated techniques.

4 Naive implementations of nearest-neighbor methods may, however, quickly become computa-
tionally intensive, so more advanced neighbor search methods may be required; see, e.g., Zezula
et al. (2006).

60 3 Content-based recommendation

3.2.2 Relevance feedback — Rocchio’s method

Another method that is based on the vector-space model and was developed in
the context of the pioneering information retrieval (IR) system SMART (Salton
1971) in the late 1960s is Rocchio’s relevance feedback method. A particular
aspect of SMART was that users could not only send (keyword-based) queries
to the system but could also give feedback on whether the retrieved items were
relevant. With the help of this feedback, the system could then internally extend
the query to improve retrieval results in the next round of retrieval.

The SMART system for information retrieval did not exploit such additional
information but rather allowed the user to interactively and explicitly rate the
retrieved documents — that is, to tell the system whether they were relevant.
This information is subsequently used to further refine the retrieval results. The
rationale of following this approach is that with pure query- and similarity-
based methods that do not provide any feedback mechanisms, the retrieval
quality depends too strongly on the individual user’s capability to formulate
queries that contain the right keywords. User-defined queries often consist only
of very few and probably polysemous words; a typical query on the web, for
instance, consists of only two keywords on average (Chakrabarti 2002).

The relevance feedback loop used in this method will help the system
improve and automatically extend the query as follows. The main idea is to
first split the already rated documents into two groups, D and D~, of liked
(interesting/relevant) and disliked documents and calculate a profotype (or
average) vector for these categories. This prototype can also be seen as a sort of
centroid of a cluster for relevant and nonrelevant document sets; see Figure 3.1.

The current query Q;, which is represented as a multidimensional term vec-
tor just like the documents, is then repeatedly refined to Q;; by a weighted
addition of the prototype vector of the relevant documents and weighted sub-
straction of the vector representing the nonrelevant documents. As an effect,
the query vector should consistently move toward the set of relevant documents
as depicted schematically in Figure 3.2.

The proposed formula for computing the modified query Q;;; from Q; is
defined as follows:

1 1 B
Qi+l=Ol*Qi+,B(|D+| Zd+)_y<ﬁ Zd) (3.5)

d+eD* d-eD~

The variables «, 8, and y are used to fine-tune the behavior of the “move”
toward the more relevant documents. The value of o describes how strongly
the last (or original) query should be weighted, and # and y correspond-
ingly capture how strongly positive and negative feedback should be taken into

3.2 Similarity-based retrieval 61

A
©)
X
@)
OgO X @ x
O X
. O
D
D’ average vector
>
O Relevant documents
X Nonrelevant documents

0/ Centroids

Figure 3.1. Average vectors for relevant and nonrelevant documents.

account in the improvement step. According to the analysis by Buckley et al.
(1994), suitable parameter values are, for instance, 8, 16, and 4 (or 1, 2, and
0.25, respectively). These findings indicate that positive feedback is more valu-
able than negative feedback and it can be even better to take only positive
feedback into account.

At first sight, this formula seems intuitive and the algorithm is very simple,
but as stated by Pazzani and Billsus (2007), there is no theoretically motivated
basis for Formula (3.5), nor can performance or convergence be guaranteed.

Relevant

O document
<> Nonrelevant

document

- Query

All documents

Figure 3.2. Relevance feedback. After feedback, the original query is moved
toward the cluster of the relevant documents; see also Manning et al. (2008).

62 3 Content-based recommendation

However, empirical evaluations with various document sets showed that useful
retrieval performance can be improved, based on the feedback mechanism,
already after the first iteration. More feedback iterations show only marginal
improvements. An experimental evaluation using variations of this relevance
feedback scheme, including an analysis of the effects of different settings, can
be found in Salton and Buckley (1997) and Buckley et al. (1994). In practical
settings it is also a good idea not to include a// terms from DT and D~ to
compute the new query (Chakrabarti 2002), as “one bad word may offset the
benefits of many good words”, but rather to use only the first 10 or 20 of the
most relevant words in terms of the IDF measure.

Overall, the relevance feedback retrieval method and its variations are used
in many application domains. It has been shown that the method, despite its
simplicity, can lead to good retrieval improvements in real-world settings; see
Koenemann and Belkin (1996) for a more detailed study. The main practical
challenges — as with most content-based methods — are (a) a certain number of
previous item ratings is needed to build a reasonable user model and (b) user
interaction is required during the retrieval phase.

The first point can be partially automated by trying to capture the user ratings
implicitly — for instance, by interpreting a click on a proposed document as a
positive rating. The question of whether such assumptions hold in general —
what to do when a user has read an article but was disappointed and what
other techniques for gathering implicit feedback can be used — remains open
(compare also the discussion on implicit ratings in Section 2.3.1).

Another technique for circumventing the problem of acquiring explicit user
feedback is to rely on pseudorelevance feedback (blind feedback). The basic
idea is to assume that the first n (say, 10) documents that match the query best
with respect to the vector similarity measure are considered relevant. The set
D~ is not used (y is set to 0) unless an explicit negative feedback exists.

The second point — that user interaction is required during the proposal
generation phase — at first glance appears to be a disadvantage over the fully
automated proposal generation process of CF approaches. In fact, interactive
query refinement also opens new opportunities for gathering information about
the user’s real preferences and may help the user to “learn” which vocabulary
to use to retrieve documents that satisfy his or her information needs. The
main assumption, of course, is that the user is capable of formulating a proper
initial query, an assumption that might not always hold if we think of terminol-
ogy aspects, multilanguage translation problems, or simply word misspellings
(Manning et al. 2008). Further aspects of interactivity in recommender systems
will be covered in more detail in Chapter 4.

Today’s web search engines do not provide mechanisms for explicit feed-
back, although, as various evaluations show, they can lead to improved retrieval

3.3 Other text classification methods 63

performance. Chakrabarti (2002) mentions two reasons for that. First, he
argues that today’s web users are impatient and are not willing to give explicit
feedback on the proposals. Second, second-round queries that include many
more terms than the initial query are more problematic from a performance
perspective and cannot be answered as quickly as the initial “two-term”
queries.

In general, however, query-based retrieval approaches are quite obviously
similar to modern web search engines, and the question may arise whether a
search engine is also a “content-based recommender”. Although until recently
popular search engine providers such as Google or Yahoo! did not personalize
their search results to particular users, it can be seen also from our news person-
alization example from the previous section (Das et al. 2007) that a trend toward
increased personalization of search results can now be observed. Today we also
see that the major players in the field have started to provide more features on
their service platforms, which typically include personalized start pages, access
to an e-mail service, online document manipulation, document management,
and so forth. As users access these features with the same identity, a broad
opportunity arises to also personalize the search results more precisely. How-
ever, reports on how personalized document rankings can be computed based
on these kinds of information and, in particular, how the different relevance
metrics, such as PageRank and document-query similarity, can be combined
are not yet available.

3.3 Other text classification methods

Another way of deciding whether or not a document will be of interest to a user
is to view the problem as a classification task, in which the possible classes are
“like” and “dislike”. Once the content-based recommendation task has been
formulated as a classification problem, various standard (supervised) machine
learning techniques can, in principle, be applied such that an intelligent sys-
tem can automatically decide whether a user will be interested in a certain
document. Supervised learning means that the algorithm relies on the exis-
tence of training data, in our case a set of (manually labeled) document-class
pairs.

3.3.1 Probabilistic methods

The most prominent classification methods developed in early text classification
systems are probabilistic ones. These approaches are based on the naive Bayes

64 3 Content-based recommendation

Table 3.3. Classification based on Boolean feature vector.

Doc-ID recommender intelligent learning school Label

AN AW =
—_O = O =
—_O O O
OO = O ==
S = = O = O
N D e S

assumption of conditional independence (with respect to term occurrences) and
have also been successfully deployed in content-based recommenders.

Remember the basic formula to compute the posterior probability for docu-
ment classification from Section 2.4.3:

1%, P(X;|Y) x P(Y)
P(X)

A straightforward application of this model to the classification task is de-
scribed by Pazzani and Billsus (1997). The possible classes are, of course, “like”
and “dislike” (named /ot and cold in some articles). Documents are represented
by Boolean feature vectors that describe whether a certain term appeared in a
document; the feature vectors are limited to the 128 most informative words,
as already mentioned.

Thus, in that model, P(v;|C = c) expresses the probability of term v; ap-
pearing in a document labeled with class c¢. The conditional probabilities are
again estimated by using the observations in the training data.

Table 3.3 depicts a simple example setting. The training data consist of
five manually labeled training documents. Document 6 is a still-unlabeled
document. The problem is to decide whether the current user will be interested —
that is, whether to recommend the item. To determine the correct class, we
can compute the class-conditional probabilities for the feature vector X of
Document 6 again as follows:

P(Y|X) = (3.6)

P(X|Label=1) = P(recommender=1|Label=1) x
P(intelligent=1|Label=1) x
P(learning=0|Label=1) x P(school=0|Label=1)

=3/3x2/3x1/3x2/3
~ 0.149

3.3 Other text classification methods 65

The same can be done for the case Label = 0, and we see in the simple example
that it is more probable that the user is more interested in documents (for
instance, web pages) about intelligent recommender systems than in documents
about learning in school. In real applications some sort of smoothing must be
done for sparse datasets such that individual components of the calculation do
not zero out the probability values. Of course, the resulting probability values
can be used not only to decide whether a newly arriving document — in, for
instance, a news filtering system — is relevant but also to rank a set of not-yet-
seen documents. Remember that we also mentioned probabilistic techniques
as possible recommendation methods in CF in the previous chapter. In CF,
however, the classifier is commonly used to determine the membership of the
active user in a cluster of users with similar preferences (by means of a latent
class variable), whereas in content-based recommendation the classifier can
also be directly used to determine the interestingness of a document.

Obviously, the core assumption of the naive Bayes model that the individual
events are conditionally independent does not hold because there exist many
term co-occurrences that are far more likely than others — such as the terms Hong
and Kong or New and York. Nonetheless, the Bayes classifier has been shown to
lead to surprisingly good results and is broadly used for text classification. An
analysis of the reasons for this somewhat counterintuitive evidence can be found
in Domingos and Pazzani (1996, 1997), or Friedman (1997). McCallum and
Nigam (1998) summarize the findings as follows: “The paradox is explained
by the fact that classification estimation is only a function of the sign (in binary
case) of the function estimation; the function approximation can still be poor
while classification accuracy remains high.”

Besides the good accuracy that can be achieved with the naive Bayes clas-
sifier, a further advantage of the method — and, in particular, of the conditional
independence assumption — is that the components of the classifier can be
easily updated when new data are available and the learning time complexity
remains linear to the number of examples; the prediction time is independent
of the number of examples (Pazzani and Billsus 1997). However, as with most
learning techniques, to provide reasonably precise recommendations, a certain
amount of training data (past ratings) is required. The “cold-start” problem
also exists for content-based recommenders that require some sort of relevance
feedback. Possible ways of dealing with this are, for instance, to let the user
manually label a set of documents — although this cannot be done for hundreds
of documents — or to ask the user to provide a list of interesting words for each
topic category (Pazzani and Billsus 1997).

The Boolean representation of document features has the advantage of sim-
plicity but, of course, the possibly important information on how many times

66 3 Content-based recommendation

Table 3.4. Classification example with term counts.

DocID Words Label
1 recommender intelligent recommender 1
2 recommender recommender learning 1
3 recommender school 1
4 teacher homework recommender 0
5 recommender recommender recommender teacher homework ?

a term occurred in the document is lost at this point. In the Syskill & Webert
system, which relies on such a Boolean classifier for each topic category, the
relevance of words is taken into account only when the initial set of appropriate
keywords is determined. Afterward, the system cannot differentiate anymore
whether a keyword appeared only once or very often in the document. In ad-
dition, this model also assumes positional independence — that is, it does not
take into account where the term appeared in the document.

Other probabilistic modeling approaches overcome such limitations. Con-
sider for instance, the classification method (example adapted from Manning
et al. 2008) in Table 3.4, in which the number of term appearances shall also
be taken into account.

The conditional probability of a term v; appearing in a document of class C
shall be estimated by the relative frequency of v; in all documents of this class:

CountTerms(v;, docs(c))
P;|C=c)= 3.7
i 2 AllTerms(docs(c)) SR

where CountTerms(v;, docs(c)) returns the number of appearances of term v; in
documents labeled with ¢ and AllTerms(docs(c)) returns the number of all terms
in these documents. To prevent zeros in the probabilities, Laplace (add-one)
smoothing shall be applied in the example:

CountTerms(v;, docs(c)) + 1

13 i|C = =
(il) AllTerms(docs(c)) + |V |

(3.8)

where | V| is the number of different terms appearing in all documents (called the
“vocabulary”). We calculate the conditional probabilities for the relevant terms
appearing in the new document as follows: the total length of the documents
classified as “1” is 8, and the length of document 4 classified as “0” is 3. The

3.3 Other text classification methods 67

size of the vocabulary is 6.

P(recommender|Label = 1) = (5+ 1)/(8 + 6) = 6/14
P(homework|Label = 1) = (04 1)/(8 + 6) = 1/14
P(teacher|Label = 1) = (0+ 1)/(8 + 6) = 1/14
P (recommender|Label = 0) = (14 1)/(3 4+ 6) = 2/9
P(homework|Label = 0) = (1 + 1)/(3 + 6) = 2/9
P(teacher|Label = 0) = (14 1)/(3 + 6) =2/9

The prior probabilities of a document falling into class 1 or class 0 are 3/4
and 1/4, respectively. The classifier would therefore calculate the posterior
probabilities as

P(Label = 1|v; ...v,) = 3/4 x (3/7)° x 1/14 x 1/14 ~ 0.0003
P(Label = 0Jv; ... v,) = 1/4 x (2/9)° x 2/9 x 2/9 ~ 0.0001

and therefore classify the unlabeled document as being relevant for the user.
The classifier has taken the multiple evidence of the term “recommender”
into account appropriately. If only the Boolean representation had been used,
the classifier would have rejected the document, because two other terms that
appear in the document (“homework”, “teacher”) suggest that it is not relevant,
as they also appear in the rejected document 4.

Relation to text classification. The problem of labeling a document as rele-
vant or irrelevant in our document recommendation scenarios can be seen as
a special case of the more broader and older fext classification (text catego-
rization or topic spotting) problem, which consists of assigning a document
to a set of predefined classes. Applications of these methods can be found in
information retrieval for solving problems such as personal e-mail sorting, de-
tection of spam pages, or sentiment detection (Manning et al. 2008). Different
techniques of “supervised learning”, such as the probabilistic one described
previously, have been proposed. The basis for all the learning techniques is
a set of manually annotated training documents and the assumption that the
unclassified (new) documents are somehow similar to the manually classified
ones. When compared with the described “like/dislike” document recommen-
dation problem, general text classification problems are not limited to only
two classes. Moreover, in some applications it is also desirable to assign one
document to more than one individual class.

68 3 Content-based recommendation

As noted earlier, probabilistic methods that are based on the naive Bayes
assumption have been shown to be particularly useful for text classification
problems. The idea is that both the training documents and the still unclassi-
fied documents are generated by the probability distributions. Basically, two
different ways of modeling the documents and their features have been pro-
posed: the multinomial model and the Bernoulli model. The main differences
between these models are the “event model” and, accordingly, how the proba-
bilities are estimated from the training data (see McCallum and Nigam 1998,
Manning et al. 2008, or Pazzani and Billsus 2007 for a detailed discussion). In
the multivariate Bernoulli model, a document is treated as a binary vector that
describes whether a certain term is contained in the document. In the multino-
mial model the number of times a term occurred in a document is also taken into
account, as in our earlier example. In both cases, the position of the terms in the
document is ignored. Empirical evaluations show that the multinomial model
leads to significantly better classification results than does the Bernoulli model
(McCallum and Nigam 1998), in particular when it comes to longer documents
and classification settings with a higher number of features. An illustrative
example for both approaches can be found in Manning et al. (2008).

Finally, another interesting finding in probabilistic text classification is that
not only can the manually labeled documents can be used to train the classifier,
but still-unlabeled documents can also help to improve classification (Nigam
et al. 1998). In the context of content-based recommendation this can be of
particular importance, as the training set of manually or implicitly labeled
documents is typically very small because every user has his or her personal
set of training examples.

3.3.2 Other linear classifiers and machine learning

When viewing the content-based recommendation problem as a classification
problem, various other machine learning techniques can be employed. At a
more abstract level, most learning methods aim to find coefficients of a linear
model to discriminate between relevant and nonrelevant documents.

Figure 3.3 sketches the basic idea in a simplified setting in which the avail-
able documents are characterized by only two dimensions. If there are only
two dimensions, the classifier can be represented by a line. The idea can,
however, also easily be generalized to the multidimensional space in which a
two-class classifier then corresponds to a hyperplane that represents the decision
boundary.

In two-dimensional space, the line that we search for has the form w;x; +
wyxy = bwhere x| and x, correspond to the vector representation of a document

3.3 Other text classification methods 69

. Relevant
Documents

O Nonrelevant
Documents

Figure 3.3. A linear classifier in two-dimensional space.

(using, e.g., TF-IDF weights) and w, w,, and b are the parameters to be learned.
The classification of an individual document is based on checking whether for
a certain document w,x; + wyx; > b, which can be done very efficiently. In
n-dimensional space, a generalized equation using weight and feature vectors
instead of only two values is used, so the classification function is W’ x = b.

Many text classification algorithms are actually linear classifiers, and it
can easily be shown that both the naive Bayes classifier and the Rocchio
method fall into this category (Manning et al. 2008). Other methods for learning
linear classifiers are, for instance, the Widrow-Hoff algorithm (see Widrow and
Stearns 1985) or support vector machines (SVM; Joachims 1998). The kNN
nearest-neighbor method, on the other hand, is not a linear classifier. In general,
infinitely many hyperplanes (or lines in Figure 3.3) exist that can be used
to separate the document space. The aforementioned learning methods will
typically identify different hyperplanes, which may in turn lead to differences
in classification accuracy. In other words, although all classifiers may separate
the training data perfectly, they may show differences in their error rates for
additional test data. Implementations based on SVM, for instance, try to identify
decision boundaries that maximize the distance (called margin) to the existing
datapoints, which leads to very good classification accuracy when compared
with other approaches.

Another challenge when using a linear classifier is to deal with noise in
the data. There can be noisy features that mislead the classifier if they are
included in the document representation. In addition, there might also be noise

70 3 Content-based recommendation

documents that, for whatever reason, are not near the cluster where they belong.
The identification of such noise in the data is, however, not trivial.

A comparative evaluation of different training techniques for text classifiers
can be found in Lewis et al. (1996) and in Yang and Liu (1999). Despite
the fact that in these experiments some algorithms, and in particular SVM-
based ones, performed better than others, there exists no strict guideline as to
which technique performs best in every situation. Moreover, it is not always
clear whether using a linear classifier is the right choice at all, as there are,
of course, many problem settings in which the classification borders cannot
be reasonably approximated by a line or hyperplane. Overall, “selecting an
appropriate learning method is therefore an unavoidable part of solving a text
classification problem” (Manning et al. 2008).

3.3.3 Explicit decision models

Two other learning techniques that have been used for building content-based
recommender systems are based on decision trees and rule induction. They
differ from the others insofar as they generate an explicit decision model in the
training phase.

Decision tree learning based on ID3 or the later C4.5 algorithms (see Quin-
lan 1993 for an overview) has been successfully applied to many practical
problems, such as data mining problems. When applied to the recommendation
problem, the inner nodes of the tree are labeled with item features (keywords),
and these nodes are used to partition the test examples based, for instance,
simply on the existence or nonexistence of a keyword in the document. In a
basic setting only two classes, interesting or not, might appear at the leaf nodes.
Figure 3.4 depicts an example of such a decision tree.

Determining whether a new document is relevant can be done very effi-
ciently with such a prebuilt classification tree, which can be automatically
constructed (learned) from training data without the need for formalizing do-
main knowledge. Further general advantages of decision trees are that they
are well understood, have been successfully applied in many domains, and
represent a model that can be interpreted relatively easily.

The main issue in the content-based recommendation problem setting is that
we have to work on relatively large feature sets using, for instance, a TF-IDF
document representation. Decision tree learners, however, work best when a
relatively small number of features exist, which would be the case if we do
not use a TF-IDF representation of a document but rather a list of “meta”-
features such as author name, genre, and so forth. An experimental evaluation
actually shows that decision trees can lead to comparably poor classification

3.3 Other text classification methods 71

Recommender

{0

recommender=1 recommender=0

intelligent
intelligent=1 intelligent=0
relevant @
learning=1 learning=0

relevant irrelevant

Figure 3.4. Decision tree example.

performance (Pazzani and Billsus 1997). The main reason for this limited
performance on large feature sets lies in the typical splitting strategy based on
the information gain, which leads to a bias toward small decision trees (Pazzani
and Billsus 2007).

For these reasons, decision trees are seldom used for classical content-
based recommendation scenarios. One of the few exceptions is the work of
Kim et al. (2001), in which decision trees were used for personalizing the
set of advertisements appearing on a web page. Still, even though decision
trees might not be used directly as the core recommendation technique, they
can be used in recommender systems in combination with other techniques to
improve recommendation efficiency or accuracy. In Nikovski and Kulev (2006),
for example, decision trees are used to compress in-memory data structures for
arecommender system based on frequent itemset mining; Bellogin et al. (2010)
propose to use decision trees to determine which user model features are the
most relevant ones for providing accurate recommendations in a content-based
collaborative hybrid news recommender system. Thus, the learning task in this
work is to improve the recommendation model itself.

Rule induction is a similar method that is used to extract decision rules from
training data. Methods built on the RIPPER algorithm (Cohen 1995, 1996) have
been applied with some success for e-mail classification, which is, however, not
a core application area of recommender systems. As mentioned by Pazzani and
Billsus (2007), the relatively good performance when compared with other clas-
sification methods can be partially explained by the elaborate postpruning tech-
niques of RIPPER itselfand a particular extension that was made for e-mail clas-
sification that takes the specific document structure of e-mails with a subject line
and a document body into account. A more recent evaluation and comparison of

72 3 Content-based recommendation

e-mail classification techniques can be found in Koprinska et al. (2007), which
shows that “random forests” (instead of simple trees) perform particularly well
on this problem.

In summary, both decision tree learning and rule induction have been suc-
cessfully applied to specific subproblems such as e-mail classification, ad-
vertisement personalization, or cases in which small feature sets are used
to describe the items (Bouza et al. 2008), which is a common situation in
knowledge-based recommenders. In these settings, two of the main advan-
tages of these learning techniques are that (a) the inferred decision rules can
serve as a basis for generating explanations for the system’s recommenda-
tions and (b) existing prior domain knowledge can be incorporated in the
models.

3.3.4 On feature selection

All the techniques described so far rely on the vector representation of doc-
uments and on TF-IDF weights. When used in a straightforward way, such
document vectors tend to be very long (there are typically thousands of words
appearing in the corpus) and very sparse (in every document only a fraction of
the words is used), even if stop words are removed and stemming is applied.
In practical applications, such long and sparse vectors not only cause prob-
lems with respect to performance and memory requirements, but also lead to
an effect called overfitting. Consider an example in which a very rare word
appears by pure chance only in documents that have been labeled as “hot”. In
the training phase, a classifier could therefore be misled in the direction that
this word (which can, in fact, be seen as some sort of noise) is a good indicator
of the interestingness of some document. Such overfitting can easily appear
when only a limited number of training documents is available.

Therefore, it is desirable to use only a subset of all the terms of the corpus
for classification. This process of choosing a subset of the available terms is
called feature selection. Different strategies for deciding which features to use
are possible. Feature selection in the Syskill & Webert recommender system
mentioned earlier (Pazzani and Billsus 1997), for instance, is based on domain
knowledge and lexical information from WordNet. The evaluation reported by
Pazzani and Billsus (1997) shows not only that the recommendation accuracy
is improved when irrelevant features are removed, but also that using around
100 “informative” features leads to the best results.

Another option is to apply frequency-based feature selection and use
domain- or task-specific heuristics to remove words that are “too rare” or
appear “too often” based on empirically chosen thresholds (Chakrabarti 2002).

3.3 Other text classification methods 73

Table 3.5. x? contingency table.

Term ¢t appeared ~ Term 7 missing

Class “relevant” A B
Class “irrelevant” C D

For larger text corpora, such heuristics may not be appropriate, however, and
more elaborate, statistics-based methods are typically employed. In theory, one
could find the optimal feature subset by training a classifier on every possible
subset of features and evaluate its accuracy. Because such an approach is com-
putationally infeasible, the value of individual features (keywords) is rather
evaluated independently and a ranked list of “good” keywords, according to
some utility function, is constructed. The typical measures for determining the
utility of a keyword are the x 2 test, the mutual information measure, or Fisher’s
discrimination index (see Chakrabarti 2002).

Consider, for example, the x? test, which is a standard statistical method to
check whether two events are independent. The idea in the context of feature
selection is to analyze, based on training data, whether certain classification
outcomes are connected to a specific term occurrence. When such a statistically
significant dependency for a term can be identified, we should include this term
in the feature vector used for classification.

In our problem setting, a2 x 2 contingency table of classification outcomes
and occurrence of term ¢ can be set up for every term as in Table 3.5 when we
assume a binary document model in which the actual number of occurrences
of a term in a document is not relevant.

The symbols A to D in the table can be directly taken from the training
data: Symbol A stands for the number of documents that contained term ¢
and were classified as relevant, and B is the number of documents that were
classified as relevant but did not contain the term. Symmetrically, C and D
count the documents that were classified as irrelevant. Based on these numbers,
the x? test measures the deviation of the given counts from those that we would
statistically expect when conditional independence is given. The x? value is
calculated as follows:

, (A+B+C+D)AD - BC)

" (A+ B)(A +C)(B + D)(C + D) G2

Higher values for x? indicate that the events of term occurrence and mem-
bership in a class are not independent.

74 3 Content-based recommendation

To select features based on the x test, the terms are first ranked by decreas-
ing order of their x? values. The logic behind that is that we want to include
those features that help us to determine class membership (or nonmembership)
first — that is, those for which class membership and term occurrence are corre-
lated. After sorting the terms, according to the proposal by Chakrabarti (2002),
a number of experiments should be made to determine the optimal number of
features to use for the classifier.

As mentioned previously, other techniques for feature selection, such as
mutual information or Fisher’s discriminant, have also been proposed for use
in information retrieval scenarios. In many cases, however, these techniques
result more or less in the same set of keywords (maybe in different order) as
long as different document lengths are taken into account (Chakrabarti 2002,
Manning et al. 2008).

3.4 Discussion

3.4.1 Comparative evaluation

Pazzani and Billsus (1997) present a comparison of several learning-based tech-
niques for content-based recommendation. Experiments were made for several
relatively small and manually annotated document collections in different do-
mains. The experiments made with the Syskill & Webert system were set up in
a way in which a subset of documents was used to learn the user profile, which
was then used to predict whether the user would be interested in the unseen
documents.

The percentage of correctly classified documents was taken as an accuracy
measure. The accuracy of the different recommenders varied relatively strongly
in these experiments (from 60 percent to 80 percent). As with most learning
algorithms, the most important factor was the size of the training set (up to
fifty documents in these tests). For some example sets, the improvements were
substantial and an accuracy of more than 80 percent could be achieved. In some
domains, however, the classifier never significantly exceeded chance levels.

Overall, the detailed comparison of the algorithms (using twenty training
examples in each method) brought no clear winner. What could be seen is that
decision-tree learning algorithms, which we did not cover in detail, did not
perform particularly well in the given setting and that the “nearest neighbors”
method performed poorly in some domains. The Bayesian and Rocchio methods
performed consistently well in all domains, and no significant differences could
be found. In the experiments, a neural net method with a nonlinear activation

3.4 Discussion 75

function was also evaluated but did not lead to improvements in classification
accuracy.

In the Syskill & Webert system, a decision for a Bayes classifier was finally
chosen, as it not only worked well in all tested domains (even if the assumption
of conditional independence does not hold) but it also is relatively fast with
respect to learning and predicting. It also seemed that using only Boolean
document representation in the classifier — as opposed to TF-IDF weights —
does not significantly affect the recommendation accuracy (Pazzani and Billsus
1997).

Finally, Manning et al. (2008) also mention that Bayes classifiers seem to
work well in many domains and summarize several techniques that have been
developed to improve classifier performance, such as feature engineering (the
manual or automatic selection of “good” features), hierarchical classification
for large category taxonomies, or taking into account that different feature sets
could be used for the different zones of a document.

3.4.2 Limitations

Pure content-based recommender systems have known limitations, which rather
soon led to the development of hybrid systems that combine the advantages of
different recommendation techniques. The Fab system is an early example of
such a hybrid system; Balabanovi¢ and Shoham (1997) mention the following
limitations of content-based recommenders.

Shallow content analysis. Particularly when web pages are the items to be
recommended, capturing the quality or interestingness of a web page by look-
ing at the textual contents alone may not be enough. Other aspects, such as
aesthetics, usability, timeliness, or correctness of hyperlinks, also determine
the quality of a page. Shardanand and Maes (1995) also mention that when
keywords are used to characterize documents, a recommender cannot differen-
tiate between well-written articles and comparably poor papers that, naturally,
use the same set of keywords. Furthermore, in some application domains the
text items to be recommended may not be long enough to extract a good set
of discriminating features. A typical example is the recommendation of jokes
(Pazzani and Billsus 2007): Learning a good preference profile from a very
small set of features may be difficult by itself; at the same time it is nearly
impossible to distinguish, for instance, good lawyer jokes from bad ones.
Information in hypertext documents is also more and more contained in
multimedia elements, such as images, as well as audio and video sequences.
These contents are also not taken into account when only a shallow text analysis

76 3 Content-based recommendation

is done. Although some recent advances have been made in the area of feature
extraction from text documents, research in the extraction of features from
multimedia content is still at an early stage. Early results in the music domain
have been reported, for instance, by (Li et al. 2003; automated genre detection)
or (Shen et al. 2006; singer identification). More research can be expected in
that direction in the near future, as the web already now is established as a major
distribution channel for digital music, in which personalized music recom-
mendations play an important role. Similar things happen in the video domain,
where, in particular, the new opportunities of semantic annotation based
on the MPEG-7 standard (ISO/IEC 15938) also allow enhanced annotation
capabilities.

If no automatic extraction of descriptive features is possible, manual anno-
tation is a theoretical option. Many authors agree that in most domains manual
annotation is too costly. However, new opportunities arise in light of what is
called Web 2.0, in which Internet users more and more play the role of con-
tent providers. It can already be observed that today’s web users actively and
voluntarily annotate content such as images or videos on popular web portals
(collaborative tagging). Although these tags are mostly not taken from limited-
size ontologies and may be inconsistent, they could serve as a valuable resource
for determining further features of a resource. How such user-provided tags can
be exploited to recommend resources to users in social web platforms will be
discussed in more detail in Chapter 11.

Overspecialization. Learning-based methods quickly tend to propose more
of the same — that is, such recommenders can propose only items that are
somehow similar to the ones the current user has already (positively) rated.
This can lead to the undesirable effect that obvious recommendations are made
and the system, for instance, recommends items that are too similar to those
the user already knows. A typical example is a news filtering recommender
that proposes a newspaper article that covers the same story that the user has
already seen in another context. The system described by Billsus and Pazzani
(1999) therefore defines a threshold to filter out not only items that are too
different from the profile but also those that are too similar. A set of more
elaborate metrics for measuring novelty and redundancy has been analyzed by
Zhang et al. (2002).

A general goal therefore is to increase the serendipity of the recommenda-
tion lists — that is, to include “unexpected” items in which the user might be
interested, because expected items are of little value for the user. A simple way
of avoiding monotonous lists is to “inject a note of randomness” (Shardanand
and Maes 1995).

3.5 Summary 77

A discussion of this additional aspect of recommender system quality, which
also applies to systems that are based on other prediction techniques, can be
found, for instance, in McNee et al. (2006). Ziegler et al. (2005) propose a
technique for generating more diverse recommendation lists (“topic diversi-
fication”). A recent proposal for a metric to measure the serendipity of the
recommendation lists can be found in Satoh et al. (2007).

Acquiring ratings. The cold-start problem, which we discussed for collabo-
rative systems, also exists in a slightly different form for content-based recom-
mendation methods. Although content-based techniques do not require a large
user community, they require at least an initial set of ratings from the user, typ-
ically a set of explicit “like” and “dislike” statements. In all described filtering
techniques, recommendation accuracy improves with the number of ratings;
significant performance increases for the learning algorithms were reported by
Pazzani and Billsus (1997) when the number of ratings was between twenty
and fifty. However, in many domains, users might not be willing to rate so many
items before the recommender service can be used. In the initial phase, it could
be an option to ask the user to provide a list of keywords, either by selecting
from a list of topics or by entering free-text input.

Again, in the context of Web 2.0, it might be an option to “reuse” information
that the user may have provided or that was collected in the context of another
personalized (web) application and take such information as a starting point to
incrementally improve the user profile.

3.5 Summary

In this chapter we have discussed different methods that are commonly referred
to as content-based recommendation techniques. The roots of most approaches
can be found in the field of information retrieval (IR), as the typical IR tasks
of information filtering or text classification can be seen as a sort of recom-
mendation exercise. The presented approaches have in common that they aim
to learn a model of the user’s interest preferences based on explicit or implicit
feedback. Practical evaluations show that a good recommendation accuracy can
be achieved with the help of various machine learning techniques. In contrast
to collaborative approaches, these techniques do not require a user community
in order to work.

However, challenges exist. The first one concerns user preference elicitation
and new users. Giving explicit feedback is onerous for the user, and deriving
implicit feedback from user behavior (such as viewing item details for a certain

78 3 Content-based recommendation

period of time) can be problematic. All learning techniques require a certain
amount of training data to achieve good results; some learning methods tend
to overfit the training data so the danger exists that the recommendation lists
contain too many similar items.

The border between content-based recommenders and other systems is not
strictly defined. Automatic text classification or information filtering are clas-
sical IR methods. In the context of recommender systems, perhaps the main
difference is that these classical IR tasks are personalized — in other words,
a general spam e-mail detector or a web search engine should not be viewed
as a recommender system. If we think of personal e-mail sorting (according
to different automatically detected document categories) or personalization of
search results, however, the border is no longer clear.

Another fuzzy border is between content-based recommenders and
knowledge-based ones. A typical difference between them is that content-
based recommenders generally work on text documents or other items for
which features can be automatically extracted and for which some sort of
learning technique is employed. In contrast, knowledge-based systems rely
mainly on externally provided information about the available items.

With respect to industrial adoption of content-based recommendation, one
can observe that pure content-based systems are rarely found in commer-
cial environments. Among the academic systems that were developed in the
mid-1990s, the following works are commonly cited as successful examples
demonstrating the general applicability of the proposed techniques.

Syskill & Webert (Pazzani et al. 1996, Pazzani and Billsus 1997) is probably
the most-cited system here and falls into the category of web browsing assistants
that use past ratings to predict whether the user will be interested in the links
on a web page (using “thumbs up” and “thumbs down” annotations). Personal
Web Watcher (Mladenic 1996) is a similar system and browsing assistant,
which, however, exploits document information in a slightly different way
than does Syskill & Webert; see also Mladenic 1999. The Information Finder
system (Krulwich and Burkey 1997) aims to achieve similar goals but is based
on a special phrase extraction technique and Bayesian networks. Newsweeder
(Lang 1995) is an early news filtering system based on a probabilistic method.
NewsRec (Bomhardt 2004) is a more recent system that is not limited to a
specific document type, such as news or web pages, and is based on SVM as a
learning technique.

As the aforementioned limitations of pure content-based recommenders
are critical in many domains, researchers relatively quickly began to combine
them with other techniques into hybrid systems. Fab (Balabanovi¢ and Shoham

3.6 Bibliographical notes 79

1997) is an early example of a collaborative/content-based hybrid that tries to
combine the advantages of both techniques. Many other hybrid approaches
have been proposed since then and will be discussed in Chapter 5. Reports
on pure content-based systems are relatively rare today. Examples of newer
systems can be found in domains in which recent advances have been made
with respect to automated feature extraction, such as music recommendation.
Even there, however, hybrids using collaborative filtering techniques are also
common; see, for instance, Logan (2004) or Yoshii et al. (2006).

3.6 Bibliographical notes

The roots of several techniques that are used in content-based recommenders
are in the fields of information retrieval and information filtering. An up-to-date
introduction on IR and its methods is given in the text book by Manning et al.
(2008). The work covers several techniques discussed in this chapter, such
as TF-IDF weighting, the vector-space document model, feature selection,
relevance feedback, and naive Bayes text classification. It describes additional
classification techniques based on SVM, linear regression, and clustering; it
also covers further specific information retrieval techniques, such as LSI, which
were also applied in the recommendation domain as described in Chapter 2,
and, finally, it discusses aspects of performance evaluation for retrieval and
filtering systems.

A similar array of methods is discussed in the textbook by Chakrabarti
(2002), which has a strong focus on web mining and practical aspects of
developing the technical infrastructure that is needed to, for instance, crawl
the web.

IR methods have a long history. A 1992 review of information filtering
techniques and, in particular, on the then newly developed LSI method can be
found in Foltz and Dumais (1992). Housman and Kaskela (1970) is an overview
paper on methods of “selective dissemination of information™, a concept that
early on implemented some of the features of modern filtering methods.

A recent overview of content-based recommendation techniques (in the
context of adaptive web applications and personalization) is given by Pazzani
and Billsus (2007). More details about the influential Syskill & Webert rec-
ommender system can be found in the original paper (Pazzani et al. 1996) by
the same authors. In Pazzani and Billsus (1997), a comparative evaluation of
different classification techniques from nearest neighbors over decision trees,
Bayes classifiers, and neural nets is given.

80 3 Content-based recommendation

Adomavicius and Tuzhilin (2005) give a compact overview on content-based
methods and show how such approaches fit into a more general framework of
recommendation methods. They also provide an extensive literature review
that can serve as a good starting point for further reading. The structure of this
chapter mainly follows the standard schemes developed by Adomavicius and
Tuzhilin (2005) and Pazzani and Billsus (2007).

